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Abstract: We consider the problem of optimal control of an object described by a system 
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1. Introduction. 

 In works [1,2] a number of optimal control problems with a free right end 

were studied, which are described by fractional-order difference equations. 

Under various assumptions, a number of necessary optimality conditions 

are established.  

           In the proposed work, we study the case of the presence of functional 

constraints of the type of inequalities. 

 Necessary optimality conditions of the type [5] are established. As noted in 

[5], such necessary optimality conditions are, in contrast to the classical optimality 

conditions, of a constructive nature. 

 The results obtained allow us to study the cases of their degeneracy. 

 

Formulation of the problem. 

Consider the problem of minimizing the functional 

  ( )    ( (  ))                                                       (1) 

under restrictions 

  ( )    ( (  ))         ̅̅ ̅̅̅,                                             (2) 

   (   )   (   ( )  ( ))     *              +         (3) 

          
 (  )                                                                         (4)

   
 ( )                                                                           ( )

    
Here    ( )      ̅̅ ̅̅̅ are given continuously differentiable scalar functions, 

 ( )    is an r-dimensional discrete vector of control actions,   is a given non-
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empty and bounded set,  the numbers        and the constant vector     are given,  

 (     )   is a given n-dimensional vector function continuous in the set of 

variables together with partial derivatives with respect to   ,    а    ( )     
 - fractional operator of order   ( see e.g. [3-13]). 

A control  ( )  * (  )  (    )    (    )+ is called an admissible 

control in problem (1)-(5)  if the corresponding solution   ( ) of the system (3)-(4) 

satisfies the constraints (2). 

2. Quality criterion increment formula.  

Let  ( ( )  ( )) be fixed and а ( ̅( )   ( )    ( )  ̅( )   ( )  

  ( )) – arbitrary - admissible processes. 

Suppose that, in problem (1.1)-(1.5) and along the admissible process 

 ( )  ( ) it is the set of admissible velocities of the system (1.3)-(1.4) i.e. lots of 

 (   ( )  )  *        (   ( )  )        +               (   ) 
convex. 

Let's put 

 ( )  {    ( (  ))         ̅̅ ̅̅̅}  ( )  * +   ( )  
In what follows, for the prostate, we will assume that 

 ( )  *       + (   )  
From the introduced notation, it is clear that   ( ) ((trajectory increment 

 ( )), corresponding to   ( ) (control increment  ( )) will satisfy the system  

         

  (  (   ))   (   ̅( )  ̅( ))   (   ( )  ( ))                                  (   )     

  (  )                                                         (   ) 

Let us calculate the increment of the functional   ( ) corresponding to the 

admissible controls  ( ) and   ̅( )   ( )    ( ): 

      
   ( )    ( ̅)    ( )    (    ( ))    ( )   

   ( (  )    (  ))     ( (  ))               (2.4) 

         

Denote by    ( ) the so far unknown n-dimensional column vectors and 

introduce analogues of the Hamilton-Pontryagin function in the form  

 (        )    
 ( ) (     ). 

Multiplying both parts of relation (2.2) scalarly by   ( ), and then 

summing both parts of the resulting identity over    from      to      and taking 

into account the expression of the Hamilton-Pontryagin function, we get that 

∑   
 ( )

    

    

  (  (   ))  ∑   
 ( )

    

    

[ (   ̅( )  ̅( ))   (   ( )  ( ))]   

 ∑[ (   ̅( )  ̅( )   ( ))   (   ( )  ( )   ( ))]

    

    

                     (   ) 
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Taking into account this identity, the increment (2.4) of the functional 

  ( ) can be represented as 

   ( )    ( (  )    (  ))    ( (  ))  ∑   
 ( )

    

    

  (  (   ))   

 ∑[ (   ̅( )  ̅( )   ( ))   (   ( )  ( )   ( ))]

    

    

                       (   ) 

Now let's deal with the transformation of the left side of the term in formula (2.5).  

To this end, consider the expression 

∑   
 ( )

    

    

  (  (   )) 

Having made the change of variables       in it and taking into account 

the initial condition (2.3), we obtain 

∑   
 ( )

    

    

  (  (   ))  ∑   
 (   )

  

      

  (  ( ))   

   
 (    )  (  (  ))    

 (    )  (  (  ))  ∑   
 (   )

    

    

  (  ( ))

  

   
 (    )  (  (  ))  ∑   

 (   )

    

    

  (  ( ))                       (   ) 

Further, taking into account the theorem on fractional summation (see, for 

example, [9]) given above in parts, we have 

∑   
 (   )

    

    

  (  ( ))    
 (    )  (  )    

 (    )  (  )   

 ∑     (   )  ( )  

    

    

 

 ( )
  (  )   

 (∑(      )
(   )  

    

    

( )  ∑ (     (  ))
(   )

    

   ( )

  ( ))   

   
 (    )  (  )  ∑     (   )  ( )                         

    

    

     (   ) 
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Taking into account identity (2.8), from the increment formula (2.6) we 

obtain 

 

   ( )    ( ̅)   ( )    ( (  )    (  ))     ( (  ))   

   
 (    )  (  )  ∑     (   )  ( )                         

    

    

 

 ∑[ (   ̅( )  ̅( )   ( ))   (   ( )  ( )   ( ))]

    

    

                             (   )
 

In what follows, we will use the notation 

 ( )
 , -     ( )  (   ( )  ( ))  

  ̅( ) , -   (   ( )  ̅( ))   (   ( )  ( ))  

   
( ), -     ( )   (   ( )  ( ))  

Under the assumptions made, the increment formula (2.9)  of the 

functional   ( )  using the Taylor formula, corresponding to the admissible 

controls  ̅( )  and  ( ) can be represented as:
 

   ( )  
   ( (  ))

  
  (  )     

 (    )  (  )   

 ∑   
 (   )  ( )

    

    

 ∑     
 (   )  ( )

    

    

     

 ∑  ( )
 
 
, -  ( )

    

    

 ∑    
( ), -

    

    

 ∑    
( )

 , -  ( )

    

    

 

 

   
 (‖  (  )‖)  ∑   

 (‖  ( )‖) 

    

    

                                               (    ) 

Here ‖ ‖ is the norm of the vector   (          )  defined by the 

formula 

‖ ‖  ∑|  |

 

   

  

a  ( ) is a value of a higher order than    i.e.  ( )      as      
Now suppose that   ( ) is the solution of the following system of linear 

homogeneous fractional order difference equations 
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{
 
 

 
 

∑     
 (   )   ( )

 
 
, -                  

    

    

  (    )   
  ( (  ))

  
                                                               

(    ) 

 

System (2.11) is called the adjoint system in problem (1.1)–(1.5) under 

consideration. 

When relations (2.11) are fulfilled, the increment formula (2.10) will take 

the following form 

   ( )   ∑    
( ), -

    

    

   (    )                                                 (    ) 

where 

 

  (    )    
 ‖  (  )‖   

 ∑   
 ‖  ( )‖  ∑    

( )
 , -  ( )

    

    

                                              (    ) 

    

    

 

Let ]1,0[  be an arbitrary number, and  ( )        an arbitrary 

vector of control actions. 

Due to the convexity of the set (6), the special increment of the admissible 

control  ( ) can be defined as follows: 

   ( )   (   )   ( )                                                              (    ) 

Here   ,   -   is an arbitrary number,  (   )        is an admissible 

control such that 

  (   ) , -     ( ) , -  

Denote by   (   ) the special increment of the admissible trajectory  ( )  
corresponding to the special increment (2.14) of the control  ( ).  

Taking into account the estimate from [9] , we obtain that 
‖  (   )‖                                                            (2.15) 

(            
 

Taking into account the estimate from (2.15) for   (    ) we obtain that 

  (     )   ( )  
         Therefore, the increment formula (2.12) implies the expansion 

           

  ( ( )     ( ))    ( ( ))    ∑    
( ), -

    

    

  ( )                            (    ) 

Has it 
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Theorem 2.1. If along an admissible process ( ( )  ( )) the set of 

admissible velocities of system (3) is convex, then for the admissible control  ( ) 

to be optimal in problem (1)-(5) it is necessary that the inequality 

   
   ( )

∑    
( ), -

    

    

                                                                 (    ) 

 performed for all    Ut  , Tt . 

Proof: Assume the opposite. Let an admissible control  ( ) be optimal and 

condition (2.17) not be satisfied, i.e. there exists  ̅( )    such that 

   
   ( )

∑   ̅ 
( ), -

    

    

                                                                     (    ) 

The special increment of the optimal control  ( ) is determined by the 

formula 

  ̅ ( )   ̅(   )   ( ), 

where   ,   -, а  ̅(   )       ,  a vector such that 

  ̅(   ) , -     ̅( ) , -  ̅( )          

Consequently, inequality (2.16)   can be written in the following form 

  ( ( )    ̅ ( ))    ( ( ))   

   ∑   ̅( ) 
( ), -

    

    

  ( )      ̅̅ ̅̅̅                                                (    ) 

Hence, taking into account the structure of the set   ( ) and (2.18) we 

obtain that for sufficiently small  , for all    ( ) 

  ( ( )     ( ))    ( ( ))    ∑   ( ) 
( ), -  ( )

    

    

  ( )                   

Further, for   *   ̅̅ ̅̅̅+  ( ) 

  ( ( )     ( ))    ( ( ))    ( (  )     (  ))     
and besides 

  ( ( )     ( ))    ( ( )) . 
The latter contradicts the optimality of the control  ( ). 

This proves the theorem. 

Let in problem (1.1)-(1.5) the set U  be convex, and  (     ) be 

continuous in the set of variables together with   (     )  and    (     ). 

By analogy with the proof of Theorem (2.1), we prove 

Theorem 2.2 If in problem (1.1)-(1.5) the set U  is convex, and  (     ) 

is continuous in the set of variables together with partial derivatives in (   )  then 

for the optimality of the admissible control  ( ) it is necessary that inequality 
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   ( )

∑   
( ) , -( ( )   ( ))

    

    

                                       (    ) 

                                       

held for all  ( )         
 The optimality condition (13) is an analogue of the linearized maximum 

principle for the problem under consideration. 
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